Friday, September 30, 2011

CNC Programming g,m codes


G-codes are also called preparatory codes, and are any word in a CNC program that begins with the letter "G". Generally it is a code telling the machine tool what type of action to perform, such as:
  • rapid move
  • controlled feed move in a straight line or arc
  • series of controlled feed moves that would result in a hole being bored, a workpiece cut (routed) to a specific dimension, or a decorative profile shape added to the edge of a workpiece.
  • set tool information such as offset.
There are other codes; the type codes can be thought of like registers in a computer.

[edit]Letter addresses

Some letter addresses are used only in milling or only in turning; most are used in both. Bold below are the letters seen most frequently throughout a program.
Sources: Smid[1]; Green et al.[2]
VariableDescriptionCorollary info
AAbsolute or incremental position of A axis (rotational axis around X axis)
BAbsolute or incremental position of B axis (rotational axis around Y axis)
CAbsolute or incremental position of C axis (rotational axis around Z axis)
DDefines diameter or radial offset used for cutter compensation. D is used for depth of cut on lathes.
EPrecision feedrate for threading on lathes
FDefines feed rate
GAddress for preparatory commandsG commands often tell the control what kind of motion is wanted (e.g., rapid positioning, linear feed, circular feed, fixed cycle) or what offset value to use.
HDefines tool length offset;
Incremental axis corresponding to C axis (e.g., on a turn-mill)
IDefines arc size in X axis for G02or G03 arc commands.
Also used as a parameter within some fixed cycles.
JDefines arc size in Y axis forG02 or G03 arc commands.
Also used as a parameter within some fixed cycles.
KDefines arc size in Z axis for G02or G03 arc commands.
Also used as a parameter within some fixed cycles, equal to Laddress.
LFixed cycle loop count;
Specification of what register to edit using G10
Fixed cycle loop count: Defines number of repetitions ("loops") of a fixed cycle at each position. Assumed to be 1 unless programmed with another integer. Sometimes the K address is used instead of L. With incremental positioning (G91), a series of equally spaced holes can be programmed as a loop rather than as individual positions.
G10 use: Specification of what register to edit (work offsets, tool radius offsets, tool length offsets, etc.).
MMiscellaneous functionAction code, auxiliary command; descriptions vary. Many M-codes call for machine functions, which is why people often say that the "M" stands for "machine", although it was not intended to.
NLine (block) number in program;
System parameter number to be changed using G10
Line (block) numbers: Optional, so often omitted. Necessary for certain tasks, such as M99 P address (to tell the control which block of the program to return to if not the default one) or GoTo statements (if the control supports those). N numbering need not increment by 1 (for example, it can increment by 10, 20, or 1000) and can be used on every block or only in certain spots throughout a program.
System parameter number: G10 allows changing of system parameters under program control.
OProgram nameFor example, O4501.
PServes as parameter address for various G and M codes
  • With G04, defines dwell time value.
  • Also serves as a parameter in some canned cycles, representing dwell times or other variables.
  • Also used in the calling and termination of subprograms. (With M98, it specifies which subprogram to call; with M99, it specifies which block number of the main program to return to.)
QPeck increment in canned cyclesFor example, G73G83 (peck drilling cycles)
RDefines size of arc radius or defines retract height in canned cycles
SDefines speed, either spindle speed or surface speed depending on modeData type = integer. In G97 mode (which is usually the default), an integer after S is interpreted as a number of rev/min (rpm). In G96 mode (CSS), an integer after S is interpreted as surface speed—sfm (G20) or m/min (G21). See also Speeds and feeds. On multifunction (turn-mill or mill-turn) machines, which spindle gets the input (main spindle or subspindles) is determined by other M codes.
TTool selectionTo understand how the T address works and how it interacts (or not) with M06, one must study the various methods, such as lathe turret programming, ATC fixed tool selection, ATC random memory tool selection, the concept of "next tool waiting", and empty tools. Programming on any particular machine tool requires knowing which method that machine uses.
UIncremental axis corresponding to X axis (typically only lathe group A controls)
Also defines dwell time on some machines (instead of "P" or "X").
In these controls, X and U obviate G90 and G91, respectively. On these lathes, G90 is instead a fixed cycle address for roughing.
VIncremental axis corresponding to Y axisUntil the 2000s, the V address was very rarely used, because most lathes that used U and W didn't have a Y-axis, so they didn't use V. (Green et al 1996[2] did not even list V in their table of addresses.) That is still often the case, although the proliferation of live lathe tooling and turn-mill machining has made V address usage less rare than it used to be (Smid 2008[1] shows an example). See also G18.
WIncremental axis corresponding to Z axis (typically only lathe group A controls)In these controls, Z and W obviate G90 and G91, respectively. On these lathes, G90 is instead a fixed cycle address for roughing.
XAbsolute or incremental position of X axis.
Also defines dwell time on some machines (instead of "P" or "U").
YAbsolute or incremental position of Y axis
ZAbsolute or incremental position of Z axisThe main spindle's axis of rotation often determines which axis of a machine tool is labeled as Z.

[edit]List of G-codes commonly found on Fanuc and similarly designed controls

Sources: Smid[1]; Green et al.[2]
CodeDescriptionMilling
( M )
Turning
( T )
Corollary info
G00Rapid positioningMTOn 2- or 3-axis moves, G00 (unlike G01) traditionally does not necessarily move in a single straight line between start point and end point. It moves each axis at its max speed until its vector is achieved. Shorter vector usually finishes first (given similar axis speeds). This matters because it may yield a dog-leg or hockey-stick motion, which the programmer needs to consider depending on what obstacles are nearby, to avoid a crash. Some machines offer interpolated rapids as a feature for ease of programming (safe to assume a straight line).
G01Linear interpolationMTThe most common workhorse code for feeding during a cut. The program specs the start and end points, and the control automatically calculates (interpolates) the intermediate points to pass through that will yield a straight line (hence "linear"). The control then calculates the angular velocities at which to turn the axis leadscrews. The computer performs thousands of calculations per second. Actual machining takes place with given feed on linear path.
G02Circular interpolation, clockwiseMTCannot start G41 or G42 in G02 or G03 modes. Must already be compensated in earlier G01 block.
G03Circular interpolation, counterclockwiseMTCannot start G41 or G42 in G02 or G03 modes. Must already be compensated in earlier G01 block.
G04DwellMTTakes an address for dwell period (may be XU, or P). The dwell period is specified in milliseconds.
G05P10000High-precision contour control (HPCC)M Uses a deep look-ahead buffer and simulation processing to provide better axis movement acceleration and deceleration during contour milling
G05.1 Q1.Ai Nano contour controlM Uses a deep look-ahead buffer and simulation processing to provide better axis movement acceleration and deceleration during contour milling
G07Imaginary axis designationM  
G09Exact stop checkMT 
G10Programmable data inputMT 
G11Data write cancelMT 
G12Full-circle interpolation, clockwiseM Fixed cycle for ease of programming 360° circular interpolation with blend-radius lead-in and lead-out. Not standard on Fanuc controls.
G13Full-circle interpolation, counterclockwiseM Fixed cycle for ease of programming 360° circular interpolation with blend-radius lead-in and lead-out. Not standard on Fanuc controls.
G17XY plane selectionM  
G18ZX plane selectionMTOn most CNC lathes (built 1960s to 2000s), ZX is the only available plane, so no G17 to G19 codes are used. This is now changing as the era begins in which live tooling, multitask/multifunction, and mill-turn/turn-mill gradually become the "new normal". But the simpler, traditional form factor will probably not disappear—just move over to make room for the newer configurations. See also V address.
G19YZ plane selectionM  
G20Programming ininchesMTSomewhat uncommon except in USA and (to lesser extent) Canada and UK. However, in the global marketplace, competence with both G20 and G21 always stands some chance of being necessary at any time. The usual minimum increment in G20 is one ten-thousandth of an inch (0.0001"), which is a larger distance than the usual minimum increment in G21 (one thousandth of a millimeter, .001 mm, that is, one micrometre). This physical difference sometimes favors G21 programming.
G21Programming inmillimeters (mm)MTPrevalent worldwide. However, in the global marketplace, competence with both G20 and G21 always stands some chance of being necessary at any time.
G28Return to home position (machine zero, aka machine reference point)MTTakes X Y Z addresses which define the intermediate point that the tool tip will pass through on its way home to machine zero. They are in terms of part zero (aka program zero), NOT machine zero.
G30Return to secondary home position (machine zero, aka machine reference point)MTTakes a P address specifying which machine zero point is desired, if the machine has several secondary points (P1 to P4). Takes X Y Z addresses which define the intermediate point that the tool tip will pass through on its way home to machine zero. They are in terms of part zero (aka program zero), NOT machine zero.
G31Skip function (used for probes and tool length measurement systems)M  
G32Single-point threading, longhand style (if not using a cycle, e.g., G76) TSimilar to G01 linear interpolation, except with automatic spindle synchronization for single-point threading.
G33Constant-pitchthreadingM  
G33Single-point threading, longhand style (if not using a cycle, e.g., G76) TSome lathe controls assign this mode to G33 rather than G32.
G34Variable-pitch threadingM  
G40Tool radius compensation offMTCancels G41 or G42.
G41Tool radius compensation leftMTMilling: Given righthand-helix cutter and M03 spindle direction, G41 corresponds to climb milling (down milling). Takes an address (Dor H) that calls an offset register value for radius.
Turning: Often needs no D or H address on lathes, because whatever tool is active automatically calls its geometry offsets with it. (Each turret station is bound to its geometry offset register.)
G42Tool radius compensation rightMTSimilar corollary info as for G41. Given righthand-helix cutter and M03 spindle direction, G42 corresponds to conventional milling (up milling).
G43Tool height offset compensation negativeM Takes an address, usually H, to call the tool length offset register value. The value is negative because it will be added to the gauge line position. G43 is the commonly used version (vs G44).
G44Tool height offset compensation positiveM Takes an address, usually H, to call the tool length offset register value. The value is positive because it will be subtracted from the gauge line position. G44 is the seldom-used version (vs G43).
G45Axis offset single increaseM  
G46Axis offset single decreaseM  
G47Axis offset double increaseM  
G48Axis offset double decreaseM  
G49Tool length offset compensation cancelM Cancels G43 or G44.
G50Define the maximum spindle speed TTakes an S address integer which is interpreted as rpm. Without this feature, G96 mode (CSS) would rev the spindle to "wide open throttle" when closely approaching the axis of rotation.
G50Scaling function cancelM  
G50Position register (programming of vector from part zero to tool tip) TPosition register is one of the original methods to relate the part (program) coordinate system to the tool position, which indirectly relates it to the machine coordinate system, the only position the control really "knows". Not commonly programmed anymore because G54 to G59 (WCSs) are a better, newer method. Called via G50 for turning, G92 for milling. Those G addresses also have alternate meanings (which see). Position register can still be useful for datum shift programming.
G52Local coordinate system (LCS)M Temporarily shifts program zero to a new location. This simplifies programming in some cases.
G53Machine coordinate systemMTTakes absolute coordinates (X,Y,Z,A,B,C) with reference to machine zero rather than program zero. Can be helpful for tool changes. Nonmodal and absolute only. Subsequent blocks are interpreted as "back to G54" even if it is not explicitly programmed.
G54 to G59Work coordinate systems (WCSs)MTHave largely replaced position register (G50 and G92). Each tuple of axis offsets relates program zero directly to machine zero. Standard is 6 tuples (G54 to G59), with optional extensibility to 48 more via G54.1 P1 to P48.
G54.1 P1 to P48Extended work coordinate systemsMTUp to 48 more WCSs besides the 6 provided as standard by G54 to G59. Note floating-point extension of G-code data type (formerly all integers). Other examples have also evolved (e.g., G84.2). Modern controls have the hardware to handle it.
G70Fixed cycle, multiple repetitive cycle, for finishing (including contours) T 
G71Fixed cycle, multiple repetitive cycle, for roughing (Z-axis emphasis) T 
G72Fixed cycle, multiple repetitive cycle, for roughing (X-axis emphasis) T 
G73Fixed cycle, multiple repetitive cycle, for roughing, with pattern repetition T 
G73Peck drilling cycle for milling - high-speed (NO full retraction from pecks)M Retracts only as far as a clearance increment (system parameter). For when chipbreaking is the main concern, but chip clogging of flutes is not.
G74Peck drilling cycle for turning T 
G74Tapping cycle for milling, lefthand thread, M04 spindle directionM  
G75Peck grooving cycle for turning T 
G76Fine boring cycle for millingM  
G76Threading cycle for turning, multiple repetitive cycle T 
G80Cancel canned cycleMTMilling: Cancels all cycles such as G73G83G88, etc. Z-axis returns either to Z-initial level or R-level, as programmed (G98 or G99, respectively).
Turning: Usually not needed on lathes, because a new group-1 G address (G00 to G03) cancels whatever cycle was active.
G81Simple drilling cycleM No dwell built in
G82Drilling cycle with dwellM Dwells at hole bottom (Z-depth) for the number of milliseconds specified by the P address. Good for when hole bottom finish matters.
G83Peck drilling cycle (full retraction from pecks)M Returns to R-level after each peck. Good for clearing flutes of chips.
G84Tapping cycle,righthand thread,M03 spindle directionM  
G84.2Tapping cycle, righthand thread,M03 spindle direction, rigid toolholderM  
G90Absolute programmingMT (B)Positioning defined with reference to part zero.
Milling: Always as above.
Turning: Sometimes as above (Fanuc group type B and similarly designed), but on most lathes (Fanuc group type A and similarly designed), G90/G91 are not used for absolute/incremental modes. Instead, U and W are the incremental addresses and X and Z are the absolute addresses. On these lathes, G90 is instead a fixed cycle address for roughing.
G90Fixed cycle, simple cycle, for roughing (Z-axis emphasis) T (A)When not serving for absolute programming (above)
G91Incremental programmingMT (B)Positioning defined with reference to previous position.
Milling: Always as above.
Turning: Sometimes as above (Fanuc group type B and similarly designed), but on most lathes (Fanuc group type A and similarly designed), G90/G91 are not used for absolute/incremental modes. Instead, U and W are the incremental addresses and X and Z are the absolute addresses. On these lathes, G90 is a fixed cycle address for roughing.
G92Position register (programming of vector from part zero to tool tip)MT (B)Same corollary info as at G50 position register.
Milling: Always as above.
Turning: Sometimes as above (Fanuc group type B and similarly designed), but on most lathes (Fanuc group type A and similarly designed), position register is G50.
G92Threading cycle, simple cycle T (A) 
G94Feedrate per minuteMT (B)On group type A lathes, feedrate per minute is G98.
G94Fixed cycle, simple cycle, for roughing (X-axis emphasis) T (A)When not serving for feedrate per minute (above)
G95Feedrate per revolutionMT (B)On group type A lathes, feedrate per revolution is G99.
G96Constant surface speed (CSS) TVaries spindle speed automatically to achieve a constant surface speed. See speeds and feeds. Takes an S address integer, which is interpreted as sfm in G20 mode or as m/min in G21 mode.
G97Constant spindle speedMTTakes an S address integer, which is interpreted as rev/min (rpm). The default speed mode per system parameter if no mode is programmed.
G98Return to initial Z level in canned cycleM  
G98Feedrate per minute (group type A) T (A)Feedrate per minute is G94 on group type B.
G99Return to R level in canned cycleM  
G99Feedrate per revolution (group type A) T (A)Feedrate per revolution is G95 on group type B.

[edit]List of M-codes commonly found on Fanuc and similarly designed controls

Sources: Smid[1]; Green et al.[2]
Code  DescriptionMilling
( M )
Turning
( T )
Corollary info
M00Compulsory stopMTNon-optional—machine will always stop upon reaching M00 in the program execution.
M01Optional stopMTMachine will only stop at M01 if operator has pushed the optional stop button.
M02End of programMTNo return to program top; may or may not reset register values.
M03Spindle on (clockwise rotation)MTThe speed of the spindle is determined by the address S, in surface feet per minute. The right-hand rule can be used to determine which direction is clockwise and which direction is counter-clockwise.
Right-hand-helix screws moving in the tightening direction (and right-hand-helix flutes spinning in the cutting direction) are defined as moving in the M03 direction, and are labeled "clockwise" by convention. The M03 direction is always M03 regardless of local vantage point and local CW/CCW distinction.
M04Spindle on (counterclockwise rotation)MTSee comment above at M03.
M05Spindle stopMT 
M06Automatic tool change (ATC)MT (some-times)Many lathes do not use M06 because the T address itself indexes the turret.
Programming on any particular machine tool requires knowing which method that machine uses. To understand how the T address works and how it interacts (or not) with M06, one must study the various methods, such as lathe turret programming, ATC fixed tool selection, ATC random memory tool selection, the concept of "next tool waiting", and empty tools. These concepts are taught in textbooks such as Smid,[1] and online multimedia (videos, simulators, etc); the latter are usually paywalled to pay back the costs of their development. They are used in training classes for operators, both on-site and remotely (e.g., Tooling University).
M07Coolant on (mist)MT 
M08Coolant on (flood)MT 
M09Coolant offMT 
M10Pallet clamp onM For machining centers with pallet changers
M11Pallet clamp offM For machining centers with pallet changers
M13Spindle on (clockwise rotation) and coolant on (flood)M This one M-code does the work of both M03 and M08. It is not unusual for specific machine models to have such combined commands, which make for shorter, more quickly written programs.
M19Spindle orientationMTSpindle orientation is more often called within cycles (automatically) or during setup (manually), but it is also available under program control via M19. The abbreviation OSS (oriented spindle stop) may be seen in reference to an oriented stop within cycles.
M21Mirror, X-axisM  
M21Tailstock forward T 
M22Mirror, Y-axisM  
M22Tailstock backward T 
M23Mirror OFFM  
M23Thread gradual pullout ON T 
M24Thread gradual pullout OFF T 
M30End of program with return to program topMT 
M41Gear select - gear 1 T 
M42Gear select - gear 2 T 
M43Gear select - gear 3 T 
M44Gear select - gear 4 T 
M48Feedrate override allowedMT 
M49Feedrate override NOT allowedMTThis rule is also called (automatically) within tapping cycles or single-point threading cycles, where feed is precisely correlated to speed. Same with spindle speed override and feed hold button.
M52Unload Last tool from spindleMTAlso empty spindle.
M60Automatic pallet change (APC)M For machining centers with pallet changers
M98Subprogram callMTTakes an address P to specify which subprogram to call, for example, "M98 P8979" calls subprogram O8979.
M99Subprogram endMTUsually placed at end of subprogram, where it returns execution control to the main program. The default is that control returns to the block following the M98 call in the main program. Return to a different block number can be specified by a P address. M99 can also be used in main program with block skip for endless loop of main program on bar work on lathes (until operator toggles block skip).

[edit]Example program

Tool Path for program
This is a generic program that demonstrates the use of G-Code to turn a 1" diameter X 1" long part. Assume that a bar of material is in the machine and that the bar is slightly oversized in length and diameter and that the bar protrudes by more than 1" from the face of the chuck. (Caution: This is generic, it might not work on any real machine! Pay particular attention to point 5 below.)
Sample
LineCodeDescription
%
O4968(Sample face and turn program)
N01M216(Turn on load monitor)
N02G20 G90 G54 D200 G40(Inch units. Absolute mode. Call work offset values. Moving coordinate system to the location specified in the register D200. Cancel any existing tool radius offset.)
N03G50 S2000(Set maximum spindle speed rev/min - preparing for G96 CSS coming soon)
N04M01(Optional stop)
N05T0300(Index turret to tool 3. Clear wear offset (00).)
N06G96 S854 M42 M03 M08(Constant surface speed [automatically varies the spindle speed], 854 sfm, select spindle gear, start spindle CW rotation, turn on the coolant flood)
N07G41 G00 X1.1 Z1.1 T0303(Call tool radius offset. Call tool wear offset. Rapid feed to a point about 0.100" from the end of the bar [not counting 0.005" or 0.006" that the bar-pull-and-stop sequence is set up to leave as a stock allowance for facing off] and 0.050" from the side)
N08G01 Z1.0 F.05(Feed in horizontally until the tool is standing 1" from the datum i.e. program Z-zero)
N09X-0.002(Feed down until the tool is slightly past center, thus facing the end of the bar)
N10G00 Z1.1(Rapid feed 0.1" away from the end of the bar - clear the part)
N11X1.0(Rapid feed up until the tool is standing at the finished OD)
N12G01 Z0.0 F.05(Feed in horizontally cutting the bar to 1" diameter all the way to the datum, feeding at 0.050" per revolution)
N13G00 X1.1 M05 M09(Clear the part, stop the spindle, turn off the coolant)
N14G91 G28 X0(Home X axis - return to machine X-zero passing through no intermediate X point [incremental X0])
N15G91 G28 Z0(Home Z axis - return to machine Z-zero passing through no intermediate Z point [incremental Z0])
N16G90 M215(Return to absolute mode. Turn off load monitor)
N17M30(Program stop, rewind to beginning of program)
%
Several points to note:
  1. There is room for some programming style, even in this short program. The grouping of codes in line N06 could have been put on multiple lines. Doing so may have made it easier to follow program execution.
  2. Many codes are "modal", meaning that they stay in effect until they are cancelled or replaced by a contradictory code. For example, once variable speed cutting (CSS) had been selected (G96), it stayed in effect until the end of the program. In operation, the spindle speed would increase as the tool neared the center of the work in order to maintain a constant surface speed. Similarly, once rapid feed was selected (G00), all tool movements would be rapid until a feed rate code (G01, G02, G03) was selected.
  3. It is common practice to use a load monitor with CNC machinery. The load monitor will stop the machine if the spindle or feed loads exceed a preset value that is set during the set-up operation. The job of the load monitor is to prevent machine damage in the event of tool breakage or a programming mistake. On small or hobby machines, it can warn of a tool that is becoming dull and needs to be replaced or sharpened.
  4. It is common practice to bring the tool in rapidly to a "safe" point that is close to the part - in this case 0.1" away - and then start feeding the tool. How close that "safe" distance is, depends on the skill of the programmer and maximum material condition for the raw stock.
  5. If the program is wrong, there is a high probability that the machine will crash, or ram the tool into the part under high power. This can be costly, especially in newer machining centers. It is possible to intersperse the program with optional stops (M01 code) which allow the program to be run piecemeal for testing purposes. The optional stops remain in the program but they are skipped during the normal running of the machine. Fortunately, most CAD/CAM software ships with CNC simulators that will display the movement of the tool as the program executes. Many modern CNC machines also allow programmers to execute the program in a simulation mode and observe the operating parameters of the machine at a particular execution point. This enables programmers to discover semantic errors (as opposed to syntax errors) before losing material or tools to an incorrect program. Depending on the size of the part, wax blocks may be used for testing purposes as well.
  6. For pedagogical purposes, line numbers have been included in the program above. They are usually not necessary for operation of a machine, so they are seldom used in industry. However, if branching or looping statements are used in the code, then line numbers may well be included as the target of those statements (e.g. GOTO N99).
  7. Some machines do not allow multiple M codes in the same line.

No comments:

Post a Comment